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1 Introduction

Many papers in the cryptography and database communities deal with the prob-
lem of statistical disclosure control by preserving the privacy of individuals. It
is a currently pressing issue. It extends for example, to the question of how to
keep information about hospital patients secret in spite of appraisal statistics
about the medical condition.

The individual values are stored in so-called statistical databases that are
used for statistical analysis purposes. To guarantee preservation privacy it is
common to forbid query access to individual records. To achieve this, only
the use of statistical summary information (COUNT, SUM, AVERAGE, MAX,
MIN) is allowed and all users queries are audited to ensure that the system is
used correctly.

However this is not enough to secure the individual information, since with
intelligent use of combination of aggregate queries it could be possible to discover
information about a single individual. One possible solution to keep the private
information secret could be to add some noise to the answer of the query. If
the answer contains no information regarding individual privacy, this noise will
be too ’small’ to change the statistic value. But if the answer contains the
private information (for example in case, the answer contain the information
only about one row) the noise will be sufficient to change it. The purpose of
noise generation is to create a distributed implementation of privacy-preserving
statistical databases.

In these databases, privacy is obtained by perturbing the true answer to
a database query by the addition of a small amount of Gaussian distributed
random noise. The generation of Gaussian noise introduces a technique for
distributing shares of many unbiased coins.

2 Structure of ODO (Our Data, Ourselves) Pro-
tocol

Let database be a collection of rows as an n-tuple (d1, d2, ..., dn) of elements
from D. D could be points in Rk, text strings, images, or any other imaginable
set of objects. The elements di are independent, meaning that revealing one to
the adversary would not give information about another. And let the query be
a function f mapping rows to the interval [0, 1]. The true answer to the query
is the value obtained by applying f to each row and adding the results.

1This work is an enhancement of Dwork ’ODO Our Data Ourselves: Privacy via Distributed
Noise Generation’. It shows only Gaussian Noise and it hopefully more understandable for
ordinary person.
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To emulate any privacy mechanism many powerful techniques of secure func-
tion evaluation exist, but generic computations can be expensive. Perturbation
of the true answer by adding noise to a database query is inspired by the combi-
nation of the simplicity of securely computing sums and the power of the noisy
sums. It is no longer necessary to have a central trusted server. The parties
can hold their own data in order to act autonomously, while simultaneously
preventing malicious parties from interfering with the utility of the data. The
ODO protocol assumes that every data holder participates in every query and
that the function f is predicate, meaning that the approach of decentralization
is quite simple.

The ODO protocol according to Dwork:

Structure of ODO (Our Data, Ourselves) Protocol

1. Share Summands: On query f, the holder of di, the data in row i of the
database, computes f(di) and shares out this value using a non-malleable
verifiable secret sharing scheme. The bits are represented as 0, 1 values in
Galois Field GF(q), for a large prime q. We denote this set {0, 1}GF (q) to
make the choice of field clear.

2. Verify Values: Cooperatively verify that the shared values are legitimate
(that is, in {0, 1}GF (q), when f is a predicate).

3. Generate Noise Shares: Cooperatively generate shares of appropri-
ately distributed random noise.

4. Sum All Shares: Each participant adds together all the shares it holds,
obtaining a share of the noisy sum f(di)+noise. All arithmetic is in GF(q).

5. Reconstruct: Cooperatively reconstruct the noisy sum using the recon-
struction technique of the verifiable secret sharing scheme.

3 Tools

3.1 Terminology

For proper understanding, it is necessary to unify common terminology.
Values in shares are shared and verified, but not reconstructed. Values that

are publicly known are said to be public.
An Extractor is a function, that is used to extract randomness from weakly

random sources. An randomness extractor [1] is a method of converting a
non-uniform input distribution into a near-uniform distribution on a smaller
set.

The Shannon information content of an outcome x is defined to be

h(x) = log2
1

P (x)
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It is measured in bits.
The entropy (in information theory) is a measure of the uncertainty asso-

ciated with a random variable. The entropy of an ensemble X is defined to be
the average Shannon information content of an outcome:

H(X) ≡
∑
x∈AX

P (x)log 1
P (X)

When it is convenient, we may also write H(x) as H(p), where p is the vector
(p1, p2, ...pn). Entropy is maximized if p is uniform [2].

Definition Letting the min-entropy of a distribution D on X be denoted
H∞(D) = −logmaxx∈XD(x). A function F : X × Y → {0, 1}n is a
(δ, ε, n)-extractor, if for any distribution D on X such that H∞(D) > δ,

|{F (x, y) : x ∈D X, y ∈U Y } − Un| < ε

where |.| is the statistical distance between two distributions, Un is the
uniform distribution on {0, 1}n, and x ∈D X stands for choosing x ∈ X
according to D.

This means that the input distribution has sufficiently high min-entropy, a
good extractor takes a short seed and outputs a distribution that is statistically
close to the uniform.

A privacy mechanism is an interface between a user and data. It can be
interactive or non-interactive.

A mechanism gives ε-indistinguishability [3] if for any two data sets that differ
on only one row, the respective output random variables (query responses) τ
and τ∗ satisfy the following for all sets S of responses:

Pr[τ ∈ S] ≤ exp(ε)× Pr[τ∗ ∈ S].

Similarly, a mechanism gives δ-approximate ε-indistinguishability if for out-
puts τ and τ∗ based, respectively, on data sets differing in at most one row,

Pr[τ ∈ S] ≤ exp(ε)× Pr[τ∗ ∈ S] + δ.

The presence of a non-zero δ permits us to relax the strict relative shift in
the case of events that are not especially likely.

3.2 Binomial and Gaussian distribution

3.2.1 Binomial distribution

The most common situation types modeled in the theory of probability are
Bernoulli trials. A Bernoulli trial is an experiment that can be either a ’failure’
or a ’success’ and the outcome is random. The Bernoulli random variable, is
just a sum of the number of successes in a single trial.
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Binomial distribution plays the central role in probability theory, as a model
of one of the most common situations, namely of a sum of the total number
of successes in n Bernoulli trials. Let Sn denote the binomial random variable,
and use the representation

Sn = X1 + ...+Xn

where X1, ..., Xn are the Bernoulli random variables describing the outcomes
of successive trials (i.e., Xi = 1 or 0, depending whether the ith trial results in
success or in failure). The probability of an single success is given by p. The
probability of getting exactly k successes in n trials is given by the probability
mass function:

P{Sn = k} =

(
n
k

)
pk(1− p)n−k = b(k;n, p)

mean

E(Sn) = np,

and the variance

V ar(Sn) = np(1− p).

3.2.2 Gaussian (Normal) distribution

The Gaussian distribution is one of the most, elsewise main distributions in both
probability theory and statistics, as well as in nature. The density of Gaussian
Distribution is defined by

f(x) = f(x;µ, σ) = 1
σ
√
2π
e−(x−µ)

2/2σ2

where µ and σ > 0 are two parameters, where µ is an arithmetical mean and σ
is a variance.

Definition The term central limit theorem (CLT) is a generic name used
to designate any of the series of theorems which assert that the sums of
large numbers of random variables after standardization (i.e., subtraction
of the mean and division by standard deviation) have approximately the
standard normal distribution.

For formal proof see f.e. in [5]. According to CLT it can be proved that
binomial distribution can be an approximation of Normal (Gaussian) distribu-
tion.
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3.2.3 Math for Gaussians and Binomials noise

In [3] it was shown, how to correctly choose the values of ε and δ for the Gaus-
sian and Binomial distribution such that the noisy sums primitive yields δ-
approximate ε-indistingishability. The following determines the largest value of
x such that a relative bound of exp(ε) holds and then integrates the probability
mass outside of this interval.

Let τ be an output summed with noise τ =
∑
i f(i, di)+noise. Replacing

database D with D
′
, where D

′
differs from D only in one row, so that the sum-

mation changes by at most 1. According to definition of ε-indistinguishability,
the probability that τ occurs with inputs D with noise= x is divided into the
probability that τ occurs with inputs D

′
with noise = x+1 should be smaller

that exp(ε).
The Gaussian density function is defined as exp(−x2/2R) so that the proba-

bility is define as Pr(x) ∝ exp(−x2/2R). The ratio of densities at two adjacent
integral points is

exp(−x2/2R)
exp(−(x+1)2/2R) = exp(x/R+ 1/2R).

This value is smaller than exp(ε) for x smaller than εR−1/2. Consequently,
if R ≥ 2log(2/δ)/ε2 and ε ≥ 1, the integrated probability beyond this point will
be at most

Pr[x > εR− 1/2] ≤ exp(−(εR)2/2R)
(εR)
√
π

≤ δ.

Followed δ-approximate ε-indistinguishability will be obtained when R is at
least 2log(2/δ)/ε2.

For the Binomial noise let be the probability p = 1/2 and the density at
point n/2 + x. So that

Pr[n/2 + x] =

(
n

n/2 + x

)
1/2n

As a consequence, relative probabilities are

Pr[n/2+x]
Pr[x/2+x+1] =

 n
n/2 + x

1/2n n
n/2 + x+ 1

1/2n

= n/2+x+1
n/2−x .

So long as x is no more than εn/8, this should be no more than (1 + ε) <
exp(ε).

Due to Chernoff bound, that says

Theorem 1.1 Let X1, ..., Xn be discrete, independent random variables such
that E[Xi] = 0 and |Xi| ≤ 1 for all i. Let X =

∑n
i=1Xi and let σ2 be the

variance of X. Then
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Pr[|X| ≥ λσ] ≤ 2e−λ
2/4

for any 0 ≤ λ ≤ 2σ

For the Binomial distribution with probability p = 1/2 Chernoff bounds can
be define as

P =
∑n
i=bn/2c+1

(
n
i

)
pi(1− p)n−i ≥ 1− e−2n(p−1/2)2

Followed for x < εn/8 the probability that a sample exceeds is

Pr[y > n/2 + εn/8] = Pr[y > (1 + ε/4)n/2]
≤ exp(−(ε2n/64)).

We get δ-approximate ε-indistinguishability so long as n is chosen to be at
least 64log(2/δ)/ε2. This exceeds the estimate of the Gaussian due to approxi-
mation error, and general slope in the analysis, though it is clear that the form
of the bound is the same.

3.3 Model of computation

We assume the standard synchronous model of computation in which n proces-
sors communicate by sending messages via point-to-point channels and up to
f ≤

⌊
n−1
3

⌋
may fail in an arbitrary, Byzantine, adaptive fashion. If the channels

are secure, than the adversary may be computationally unbounded. However,
if the secure channels are obtained by encryption then it can be assume the
adversary is restricted to probabilistic polynomial time computations [1].

Definition The Verifiable Secret Sharing (VSS)

A VSS scheme allows any processor distribute shares of a secret, which
can be verified for consistency. If the shares verify, the honest processors can
always reconstruct the secret regardless of the adversary’s behavior. Moreover,
the faulty processors by themselves cannot learn any information about the
secret. A nonmalleable VSS scheme ensures that the values shared by a non-
faulty processor are completely independent of the values shared by the other
processors; even exact copying is prevented.[1]

3.4 Adaptive Query Sequences

What happened after multiple queries? Degrade the values of ε and δ in unin-
tentional manner?

Theorem 1.2 A mechanism that permits T adaptive interaction with a δ-
approximate ε-indistinguishable mechanism ensures δT-approxiamte εT-
indistinguishability.
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Proof. Started by examining the probability that the transcript, written as
an ordered T-tupel, lands in a set S.

Pr[x ∈ S] =
∏
i≤T Pr[xi ∈ S|x1, ..., xi−1]

As the noise is independent at each step, the condition on x1, x2, ..., xi−1
only affects the predicate that is asked. As a consequence, can substitute∏

i≤T Pr[xi ∈ Si|x1, ..., xi−1] ≤
∏
i≤T (exp(ε)× Pr[x′

i ∈ Si|x1, ..., xi−1] + δ)

If look at the additive contribution of each of the δ terms, of which there are
T, it can be notice that there are only ever multiplied by probabilities, which
are at most one. Therefore, each contributes at most an additive δ.∏

i≤T Pr[xi ∈ Si|x1, ..., xi−1] ≤
∏
i≤T (exp(ε)× Pr[x′

i ∈ Si|x1, ..., xi−1]) + δT

= (exp(εT )×
∏
i≤T (Pr[x

′

i ∈ Si|x1, ..., xi−1]) + δT

= (exp(εT )× Pr[x′

i ∈ S] + δT

The proof is complete.

4 Generating Gaussian Noise 2

The first strong positive results for output perturbation added noise drawn from
a Gaussian distribution, with density function Pr[x] ∝ exp(−x2/2R). In order
to recast those results in terms of indistinguishability was shown in Section 3.2
that the addition of Gaussian noise gives δ-approximate ε-indistinguishability for
the noisy sums primitive when ε > [log(1/δ)/R]1/2. In a similar vein, Binomial
noise, where n tosses of an unbiased 1 coin are tallied and divided by 2, also
gives δ-approximate ε-indistinguishability so long as the number of tosses n is
at least 64log(2/δ)/ε2.

The follow solution use the full power of coin-flipping and is cost effective
when c is sufficiently large (∈ Ω(n)). As a result, it will be required only Ω(c)
sharing of values in GF(2) when c ∈ Ω(n). Let n denote both the number of
players and the desired number of coins. And according to Dwork [1]:

1. Each player i shares a random bit by sharing out a value bi ∈ {0, 1}GF (q),
using a non-malleable verifiable secret sharing scheme, where q is suffi-
ciently large, and engages in a simple protocol to prove that the shared
value is indeed in the specified set. (The verification is accomplished by
distributively checking that x2 = x for each value x that was shared, in
parallel. This is a single secure function evaluation of a product, addition
of two shares, and a reconstruction, for each of the n bits bi.) This gives
a sequence of low-quality bits in shares, as some of the shared values may
have been chosen adversarially. (Of course, the faulty processors know the
values of the bits they themselves have produced.)

2This complete chapter ist cited from [1]
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2. Now, suppose for a moment that we have a public source of unbiased
bits, c1, c2, ..., cn. By XORing together the corresponding b′s and c′s ,
we can transform the low quality bits bi (in shares) into high-quality bits
bi ⊗ ci, in shares. (Again, the faulty processors know the values of the
(now randomized) bits they themselves have produced.) The XORing is
simple: if ci = 0 then the shares of bi remain unchanged. If ci = 1 then
each share of bi is replaced by one minus the original share.

3. Replace each share s by 2s-1, all arithmetic in GF(q). This maps shares
of 0 to shares of −1, and shares of 1 to (different) shares of 1.

4. Finally, each participant sums her shares to get a share of the Binomial
noise.

Now it is left to explain how to generate the ci. Each participant randomly
chooses and non-malleably verifiably shares out two bits, for a total of 2n low-
quality bits (b

′

1,b
′

2,..., b
′

2n) in shares. The b
′

i are then reconstructed, so that

they become public. The sequence b
′

1b
′

2...b
′

2n is a bitfixing source: some of
the bits are biased, but they are independent of the other bits (generated by
the good participants) due to the non-malleability of the secret sharing. The
main advantage of such a source is that it is possible to apply a deterministic
extractor on those bits and have the output be very close to uniform. Since
the bits b

′

1b
′

2...b
′

2n are public, this extraction operation can be done by each
party individually with no additional communication. The currently one of
best known deterministic extractor is describe in [4], which produces a number
m > n of nearly unbiased bits. The outputs of the extractor are public coins
c1...cm.

The principal costs are the multiplications for verifying membership in {0, 1}GF (q)

and the executions of verifiable secret sharing. Note that all the verifications of
membership are performed simultaneously, so the messages from the different
executions can be bundled together. The same is true for the verifications in
the VSS. The total cost of the scheme is Θ(n) multiplications and additions in
shares, which can be all done in a constant number of rounds.

5 Conclusion

Two areas of research are tied in this work: the study of privacy-preserving
statistical databases and that of cryptographic protocols. It was inspired by
the combination of the computational power of the noisy sums primitive in the
first area and the simplicity of secure evaluation of sums in the second area.
The effect is to remove the assumption of a trusted collector of data, allowing
individuals control over the handling of their own information.
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